FT/P3-20 Physics and Engineering Basis of Multi-functional Compact Tokamak Reactor Concept

نویسندگان

  • R.M.O. Galvão
  • G. O. Ludwig
  • E. Del Bosco
  • M.C.R. Andrade
  • Jiangang Li
  • Yuanxi Wan
  • Yican Wu
  • B. McNamara
  • P. Edmonds
  • M. Gryaznevich
  • R. Khairutdinov
  • V. Lukash
  • A. Danilov
  • A. Dnestrovskij
چکیده

An important milestone on the Fast Track path to Fusion Power is to demonstrate reliable commercial application of Fusion as soon as possible. Many applications of fusion, other than electricity production, have already been studied in some depth for ITER class facilities. We show that these applications might be usefully realized on a small scale, in a Multi-Functional Compact Tokamak Reactor based on a Spherical Tokamak with similar size, but higher fields and currents than the present experiments NSTX and MAST, where performance has already exceeded expectations. The small power outputs, 20-40MW, permit existing materials and technologies to be used. The analysis of the performance of the compact reactor is based on the solution of the global power balance using empirical scaling laws considering requirements for the minimum necessary fusion power (which is determined by the optimized efficiency of the blanket design), positive power gain and constraints on the wall load. In addition, ASTRA and DINA simulations have been performed for the range of the design parameters. Our studies show that increased toroidal field in a spherical tokamak can be possibly achieved by use of commercially available high temperature superconductors. This multi-functional compact reactor will also contribute to the mainstream GW Fusion power concept by providing data on burning plasma, test of diagnostics, remote handling, blanket design and operation, reactor integration etc. In this paper, the motivation for the concept as well as physics and technological challenges of the multi-functional compact reactor are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Burning Plasma Simulation and Environmental Assessment of Tokamak, Spherical Tokamak and Helical Reactors

Reference 1-GWe D-T reactors; tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors, are designed using PEC (Physics Engineering Cost) code, and thier plasma behaviors with Internal Transport Barrier (ITB) operations are analyzed using TOTAL (Toroidal Transport Analysis Linkage) code, which clarifies the requirement of deep penetration of pellet fueling to realize steady-state advanced...

متن کامل

PPPL-3749_Cover copy

The next major frontier in magnetic fusion physics is to explore and understand the strong non-linear coupling among confinement, MHD stability, self-heating, edge physics and waveparticle interactions that is fundamental to fusion plasma behavior. The Fusion Ignition Research Experiment (FIRE) design study has been undertaken to define the lowest cost facility to attain, explore, understand an...

متن کامل

The design of the KSTAR tokamak

The Korea Superconducting Tokamak Advanced Research (KSTAR) Project is the major effort of the Korean National Fusion Program (KNFP) to develop a steady-state-capable advanced superconducting tokamak to establish a scientific and technological basis for an attractive fusion reactor. Major parameters of the tokamak are: major radius 1.8 m, minor radius 0.5 m, toroidal field 3.5 Tesla, and plasma...

متن کامل

Design Study of a Tokamak Power Reactor with an Electron Cyclotron Resonance Heating System

A detailed design is presented of a tokamak power reactor with an electron cyclotron resonance heating system. Major research topics include: physics constraints imposed on the design of a reactor by the ECR wave absorption conditions; design of the high frequency (200 GHz) gyrotrons needed for plasma heating; the gyrotron power and magnet systems; a microwave transmission system in oversize wa...

متن کامل

Economic and Environmental Assessment Modeling of Magnetic and Inertial Fusion Reactors

In order to search for economically and environmentally optimized fusion reactors, physics properties, engineering designs and the cost of electricity (COE) are evaluated by the PEC (Physics-Engineering-Cost) system code for several magnetic confinement fusion reactors including tokamak (TR), helical (HR) and spherical tokamak (ST) reactors. The life-cycle CO2 emission amounts are also evaluate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008